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TIME SERIES MODEL IDENTIFICATION BY 

ESTIMATING INFORMATION, MEMORY, AND QUANTILES 

by Emanuel Parzen 

Department of Statistics 
Texas A&M University 

College Station, TX 77843 

Abstract 

\ 

This paper applies techniques of Quantile Data Analysis to 

non-parametrically analyze time series functions such as the 

sample spectral density, sample correlations, and sample partial 

correlations.  The aim is to identify the memory type of an 

observed time series, and thus to identify parametric time domain 

models that fit an observed time series.  Time series models are 

usually tested for adequacy by testing if their residuals are 

white noise.  It is proposed that an additional criterion of fit 

for a parametric model is that it have the non-parametrically 

estimated memory characteristics.  An important diagnostic of 

memory is the index "$ of regular variation of a spectral 

density; estimators are proposed for ß.  Interpretations of the 
new quantile criteria are developed through cataloging their 

values for representative time series.  The model identification 

procedures proposed are illustrated by analysis of long memory 

series simulated by Granger and Joyeux, and the airline model 

of Box and Jenkins. 
r- 
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Dedication 

This paper is dedicated to the memory of Gwilym M. Jenkins. 

The contributions to time series analysis of Gwilym M. Jenkins 

(1932-1982) will always be embedded deeply into the field.  His 

work (especially joint work with George Box) has influence in 

diverse fields of science.  I was fortunate to come to know 

Gwilym early in my career, on a visit to London in 1958.  He 

spent 1959-1960 with me at Stanford and I spent 1961-1962 with 

him at Imperial College.  He earned the respect and affection 

of all who knew him or his work.  His life and work was heroic. 

As we contemplate the sadness of his death so young, may we 

continue to enjoy his spirit. 

1 
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1.  FUN.STAT approach to time series model identification 

The need to analyze data arising in the form of time series 

arises in diverse fields.  The concept of a conventional analysis 

is not the same in each field.  Engineers tend to estimate mean, 

variance, and spectrum (which may be regarded as a non-parametric 

signature of models).  Economists and forecasters tend to 

estimate mean, variance, and time domain models such as ARMA or 

ARIMA (which are parametric models).  Spectral and ARMA 

estimation are not routine procedures; there are many algorithms 

for spectral estimation and time domain model identification. 

In addition there are critics of spectral and correlation 

based methods of time series analysis, of whom the most 

prominent is Handelbrot  (1982).  This paper describes an 

approach to time series analysis which attempts to use diverse 

methods of analysis simultaneously in order to meet the needs 

of all the fields of applications of time series analysis. 

It also aims to integrate spectral and correlation methods 

with methods for long memory and/or long tailed time series. 

An approach to spectral analysis and time domain modeling 

of time series is described in Parzen (1979), (1930), (1981), 

(1982), (1983a), (1983b), (1983c). An approach (motivated by 

time series methods) to statistical data analysis of probability 

distributions is described in Parzen (1979), (1982), (1983a), 

1983b), (1983c), (1983d); it is called the Quantile Data Analysis 

and FUN.STAT approach, to connote that it is based on functional 

_~d 
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statistical inference, entropy and information measures, and 

quantile and density quantile approach. 

Parzen (1980) states that "a criterion that any general 

time series modeling strategy must fulfill is that its 

conceptual framework should provide a role for the continuing 

quest for a time series decomposition. ... Thus it seems 

critical that a successful approach to time series modeling 

employ simultaneously both the spectral domain and the time 

domain."  This paper discusses the enhanced insight to be 

obtained by also employing simultaneously the quantile domain 

and the information domain. 

This paper discusses how to add to our approach to time 

series model identification new diagnostic measures, based on 

quantile data analysis of spectral density function, and 

information measures.  The approach implemented in our time 

series computer program library TIMESBOARD is called ARSPID 

(for autoregressive spectral identification).  The "enhanced" 

approach could be called ARSPIQ (for autoregressive spectral 

information quantile identification). 

In empirical time series analysis a central role in model 

identification is the concept of memory [see Parzen (1981)] 

which yields a classification of a time series into one of the 

following three classes: 

no memory    = white noise 

short memory =    stationary ergodic but not white noise 

long memory trends, seasonal cycles, long cycles, 
non-stationary 

MM 
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When a time series is classified as no memory (white noise), 

it requires no further analysis (except for quantile 

identification of its probability distribution). 

When a time series is classified as a short memory time 

series, it is described (parametrised) by ARMA(p.q) schemes 

that transform it to white noise.  The orders p and q are not 

measures of the length of memory. 

When a time series is classified as a long memory time 

series it is described (parametrised) by operators which 

transform it to a short memory time series. 

To describe the dependence structure of a time series one 

introduces quantitative indices which are non-parametric 

statistics guiding our choice of parametric models. 

An ARMA model (which is a finite parameter time domain 

model) is a parametric description of the dependence structure 

of a short memory time series.  A nonparametric description of 

its dependence structure is provided by the spectral density 

function from which one can deduce "significant frequencies" 

(at which the spectral density has local maxima). 

The operations which transform a long memory time series 

to a short memory one (or which represent a long memory time 

series in terms of a short memory one) can be considered a 

parametric time domain model.  Nonparametric descriptions of 

long memory properties are introduced in this paper in terms of 

the index of regular variation of the spectral density at a 

specified frequency, usually zero frequency. 



2.  Quantile identification of probability distributions 

To identify probability distribution that fit a time series 

sample Y(t), t=l,...,T, one treats the sample as a data batch 

X-i , . . . , X . 1     n 
For a data batch X,,...,X one can define the sample 

distribution function F(x), -°°<x<°°, defined by 

F(x) = fraction of X,,...,X which are <_ x, 

and the sample quantile function Q(u), 0<u<l, defined by 

Q(u) = F_1(u) = inf {x: F(x) > u} 

Quick and dirty insight into the distributions that fit the 

univariate distribution function F is provided by a plot of 

the sample informative quantile function 

!Q(U) =  , q<u) - q(0-5)   ( 0<u<1 
2{Q(0.75) - Q(0.25)} 

The IQ function is plotted with a vertical scale from -1 

to 1; its values are truncated when they exceed +1.  For ease 

of interpretation of the IQ funption, we also plot the IQ 

function of the uniform distribution which is a straight line 

passing through (0, -.5) and (1, .5). 

- 
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The distribution functions F(x) that we seek to fit to 

the data are usually of the fom 

F<x> - Fo^> 

for parameters y and o to be estimated, and F (x) a known 

distribution function.  The most important cases of F (x) are; 

normal 
x 

Fo(x) = $(x) = /  <j,(y) dy 

<fr(y) = (2Tr)"1/2 exp - \ y2 

exponential    F (x) = 1 - e     ,  x > 0 

One can test (before parameter estimation) the goodness of fit 

of F(x) to  F(x) = F (—-) by introducing the weighted spacings 

d(u) = ±- f0Q0(u) q(u) 
0O 

where:  fQQQ(
u) = fQ(^" (u)) is tne density-quantile function 

of the specified distribution; q(u) = Q'(u) is the sample 

quantile density function (expressible in terms of spacings, or 

differences of successive order statistics)j and 

°o = /o Wu) ^(u) du 

J_— ] 
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is an estimator of o called the score deviation.  The test   

function is the cumulative weighted spacings function 

D(u) = /" d(t) dt,  0<u<l 

which one compares with the uniform distribution D(u) = u. 

To test for exponentiality, take f Q (u) = 1 - u.  The 

diagnostic function D(u) will appear linear when the data is 

exponential.  In the important case of a mixture distribution, 

[that is, the lower order statistics represent values from an 

exponentially distributed sub-population], D(u) will be linear 

over an initial interval 0<u<jp.  When the data batch is the 

sample spectral density, the value p estimates the proportion 

of the total power which is white noise. 

Diagnostic measures of time series parameters [the sample 

spectral density and correlogram] are provided by plots of 

suitable IQ(u) and D(u) functions.  Examples of their power as 

discriminators of memory are given in Section 7. 

Quantile Data Analysis of Sample Spectral Density 

When the sample mean Y is large, it is necessary to transform 

Y(t) to Y(t) - Y; otherwise one would always obtain a diagnostic 

that Y(«) is a long memory time series.  An alternative first 

step in time series analysis is to replace Y(t) by 

{Y(t) - Q(0.5)J * 2{Q(0.75) - Q(0.25)} 

•—^-       --———~——~—   --- I 



When Y(t) is a pre-processed time series (from the sample, 

the mean or median has been subtracted) one computes the sample 

Fourier transform 

*(<•>) = I     Y(t) exp (-2niu,t) 
t=l 

at an equi-spaced grid of frequencies in 0<w<l of the form 

ID = k/S, k=0,l,...,S - 1.  We call S the spectral computation 

number; one should choose S > T + M, where M is the maximum 

lag at which one computes sample correlations p(v). 

The sample spectral density f (w) , 0<uv<l, is computed at 

a) = k/S by squaring and normalizing the sample Fourier transform: 

S-l 
f(w) - U>(w)|2 * £ I \i(h\2 

b
 k=o  b 

The classification of the time series as no memory (or 

white noise) is equivalent to the random variables representing 

the values of the sample spectral density 

f(ü)),  w-k/S k=l [S/2] 

having the property that they are asymptotically independent 

and exponentially distributed.  Therefore tests for white noise 

can be obtained by quantile data analysis based tests for 

exponentiality of the sample spectral density f(io) at suitable 

frequencies. 

MM —mm i 
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The data batch f(f), k=0, l,...,S/2, is tested for 

exponentiality by forming its informative quantile function 

IQ(u) and its cumulative weighted spacings function D(u), with 

f Q (u) = 1-u.  How one interprets the quantile data analysis of 

the sample spectral density (periodogram) is best illustrated by 

examples. 

  .-»M. • J>H 
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3.   Correlation diagnostics for model memory identification 

The time series analyst seeks to develop for an observed 

sample time series Y(t), t=l,2,...,T of a time series Y(t), 

t=0, +1, ... various functions that can be estimated and plotted 

which provide insight into, and diagnostic measures of, possible 

models that fit the observed time series. 

Schuster (1898) pioneered techniques of spectral analysis. 

To detect hidden periodicities, Schuster proposed calculating 

what we today call the sample unnormalized spectral density or 

periodogram 

T 
£T(w) - l   | I     Y(t) exp (-2TTitü))|2 , -0.5<u)<0.5. 

t=l 

One actually computes and plots fT(co) at an equi-spaced 

grid of frequencies u>, =k/S, k=0,l,..., S-l, where S is the 

spectral computation number.  Using the Fast Fourier Transform, 

one chooses T<S<2T. 

The graph of fT(co) is a very wiggly function.  If one 

interprets local maxima of fT(u>) as indicating "significant 

frequencies" representing "hidden periodicities" one obtains 

many spurious periodicities . 

The notion of the spectral density f(u>) of a time series 

Y(t), t=0, +1, ... is defined heuristically by 

f(u>) - lim fT(ui) 

- MM «• M« «M 
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If the limit existed one might call f (u>) the asymptotic spectral 

density of the time series. However the limit does not exist in 

any customary mode of convergence. 

Wiener (1930) proposed solving the harmonic analysis 

problem by defining the sample covariance function R_(v) which 

equals the Fourier transform of fT(io): 

T-v 
v = 0, 1 T-l 8_,<v) = £ I     Y(t+v) Y(t) 

t=l 

= 0 ,  v > T, 

= Rj.(-v) ,  v < 0 

0.5 
R-(v) = /   exp (2irivuj) fT(cu) 

-0.5 

The limit whose existence needs to be assumed is 

R(v) = lim Rj,(v) 
T-*-«° 

one calls R(v) the asymptotic covariance function of the time 

series.  One calls 

/ N  R(v) l(v) = RTuT 

the asymptotic correlation function; it is the limit of the sample 

correlation function 

-— —**- - • • 
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RpCv) 
pT(v) " R^TÖT 

The sample correlation function pT(v) is an important 

building block for methods of model identification.  Its plot 

is called the correlogram.  One could test for white noise by 

testing whether pT(v), v=l,2,.., N constitute a random normal 

data batch. 

The cumulative periodogram 

FT(u) = r fT<u)') d o  T ai 

is a diagnostic tool for providing evidence of hidden 

periodicities.  If it converges, its limit function F(ijj) 

provides a spectral representation of R(v): 

R(v) = /  exp 2irivw dF(w) 

A probability model under which the asymptotic covariance 

functions exists is the following:  Y(t), t=0, +1,... is a zero 

mean Gaussian covariance stationary time series with covariance 

function R(v) satisfying (for all t and v) 

R(v) = E[Y(t+v) Y(t)] 

When the time series is stationary and ergodic, the sample 

covariance function converges to the covariance function. 

«Mii^a 
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A Gaussian stationary time series is ergodic if and only if 

T 
lim h    I    R2(v) - 0 
T+oo L   v=l 

It is natural to classify a stationary time series into 

three classes according to the rate of decay of the correlation 

function p(v): 

1 T 

white noise      ^ J p2(v) = 0  for all T 

j  

(no memory) 
T L-. v=l 

1  T 
ergodic £ \   p2(v) -»- 0 as T 

(short memory)     v_ 

1 T 

non-ergodic      sr \   p2(v) \*  0 

(long memory) 
Tv^l 

One of the aims of this paper is to discuss the unifying role of 

the concept of memory.  The foregoing trichotomy indicates that 

there are three types of memory (no, short, long).  However the 

insights into model identification provided by the notion of 

memory are captured not by definitions in terms of correlations 

(or even partial correlations) but by definitions in terms of the 

spectral density function and sample spectral density. 

«_•_-_ 
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4.  Spectral density memory classification and indices 

The spectral density function f (u>), -0.5<u><:0.5 is defined 

as the Fourier transform of the correlation function p(v): 

fU) = I       e-2TriVwp(v) 
V=-oo 

A sufficient condition for f(aj) to exist as an ordinary function 

is that p(v) is summable.  A long memory time series may not 

possess a spectral density.  To be able to use such a function, 

we introduce the sequence of approximating spectral densities 

fT(u) -  I       exp (-27rivw) p(v) (1- -&L) 
1      lvI<T T 

The correlation criteria for memory classification provide 

equivalent criteria in terms of 

Var [L] = / "  {f („>) - l}2 du, = 2  J  p(v) (1 - l^l)2 

-0.5 v=l 

However a more useful criterion is the dynamic range of f j(co) . 

We discuss its definition only for the case that f(o>) exists. 

A stationary time series can have a spectral density f(w) 

and yet not be representable as an autoregressive process.  One 

needs to assume an additional condition such as f(d>) is bounded 

above and below; for some constants c, and c«, 0 < c, £ f(w) < 

c2 < •  •  The dynamic range of f(u>) is defined to be 

L 
•—     - - — 1 
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(m*x log f(M) 
min 

m log f(u)} 

Dynamic range classification of memory of a time series: 

no memory    2  dynamic range = 0 

short memory  =  0 < dynamic range < °° 

long memory  = dynamic range = » 

Often, zero frequency is the frequency at which the spectral 

density has a behavior causing it to have infinite dynamic range. 

As OJ+0, the spectral density f(u)) is assumed to be a regularly 

varying function, with the representation [called the regular 

variation representation at frequency o)=0] 

f(cjj) = <JL> L(u>) 

where L (to) is a slowly varying function.  The value of 6 is an 

index of length of memory, since 

No and short memory  =  6=0 

Long memory =6^0 

Long memory time series models considered by Mandelbrodt (1973), 

Granger and Joyeux (1980), and Geweke and Porter-Hudak (1983) 

have spectral density f(w) satisfying the regular variation 

representation.  The index 6<0 corresponds to a zero value for 

MMtai    - - 
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f(w) at w"0, while 6>0 corresponds to an infinite value for 

f(üj) at iu=0. 

When 6>0, the spectral density f(w) is an integrable function 

only for 0£6<1; the correlation function p(v) decays slowly as 

p(v) **< v 
6-1 

as v -*•  °° 

The value at OJ=0 of f(u>) can be * and still <5=0; this holds for 

2 
f(cü) %   (logco)  for small u>, corresponding to 

p(v) \ log v 
v 

as v -*•  oo . 

A symbolic spectral density f(oj) with 6>1 is that of a time 

series Y(-) whose first difference AY(t) = Y(t) - Y(t-l) is 

short memory (covariance stationary with spectral density 

bounded above and below) j then 

£YCw) * -j- fAY(w) 

and 6=2. 

Parzen (1983d) gives explicit formulas for the index 6 in 

the context of density-quantile estimation: 

6 = lim /log f (coy) dy - log f(oj) 
oj-i-0 

lim -  r  log f(X) dX - log f(w) 
OJ-^0 

w o 

«MB i 
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To estimate 6 one forms 

k-EjIj los f4> " los f<TT> 

where n and k are integers tending to °° in such a way that k/n 

tends to 0.  One can show that 

6 = lim &u 
k+co K 

k/n-*0 

A similar formula can be used to estimate 6 in a regular 

variation representation of f(w) at a frequency w : represent 

b)  = m/n and define 

6k = 1 I     log f<JÜ» - log £&g3)   • 
j-1 

Examples of estimates of <5 are given in Section 7. 

We estimate the memory index 6 from consistent estimators 

f(u)) of the spectral density f.  We use:  (1) the non-parametric 

kernel spectral density estimator 

GO 

f(w)   =     I      k(vf)pT(v)   exp  -2TTiu>v ,        |UJ|<0.5 
V=-oo 

7/8 with truncation point M = T '  (in practice, we use M • T/2) 

and Parzen window 

U  
— 



r   I 

k(t) = 1 - 6t2 + 6|t|3,   |t| < 0.5, 

17 

- 2 (1- Itl) ,   0.5 < |t| < 1, 

0 ,  otherwise   ; 

and (2) autoregressive spectral density estimators. 

Only examples can show which values of 6 occur in real 

series.  The goal in estimating 6 is to develop diagnostics 

concerning the "detrending" operations to be used to transform 

a long memory series to a short memory time series.  To model 

time series, Box and Jenkins (1970) introduced the ARIMA(p,d,q) 

model.  Estimation of the parameter d can be approached by 

estimating 6.  Estimation of p and q can be approached by diverse 

order determining methods involving estimating information. 

Determining the degree of differencing:  When a time series 

Y(t) can be transformed to a stationary time series Z(t) by 

differencing d times, one can think of the "spectral density" 

fyCoj) of Y(«) as having the representation 

fY<u.) = |i-e-27Tia)r2d fz(u) 

which is a special case of assuming that fY(oj) is regularly 

varying at  w=0 with index 6=2d.  The foregoing estimators for 6 

may provide alternatives to the techniques for estimating d 

which have been proposed by Granger and Joyeux (1980), Janacek 

(1982), and Geweke and Porter-Hudak (1983). 

—_ 
••- 
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5.   ARMA models and prediction error memory classification 

The concept of an autoregressive process was introduced 

by Yule (1927) as an alternative technique for detecing hidden 

periodicities, and estimation of the frequency u in the time 

series model 

Y(t) = A cos 2-iTiot + B sin 2-n^t  +  e(t) 

where e(«) is white noise.  The function cos 27iü)t satisfies the 

second order difference equation 

Y(t) + aL Y(t-l) + a2 Y(t-2) = 0 

with a, • -2 cos 2nu)  and a« = 1.  Yule suggested determining 

coefficients a, and a~ minimizing 

I   {Y(t) + a, Y(t-l) + a2 Y(t-w)}' 
t=l 

These coefficients may be interpreted as estimators of the 

parameters in the "random shock" model 

Y(t) + ax Y(t-l) + a2 Y(t-2) = e(t) 

where e(t) is white noise.  Thus was born the AR(2) model 

-- --- j 
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Autoregressive (AR), moving average (MA), and autoregressive- 

moving average schemes (ARMA) now play a central role in time 

series analysis, since they provide basic models for time series 

model identification, forecasting, and spectral estimation. 

One definition of an ARMA(p,q) model for a zero mean 

covariance stationary time series Y(t), t=0, +1, ... is 

Y(t) + a (1) Y(r-l) + ...+ ap(p) Y(t-p) 

= E(t) + bq(l) e(t-l) +...+bq(q) c(t-q) 

where e(t) is a white noise time series, and the transfer 

functions 

gp(z) = 1 + ap(l)z+...+ a (p) zp, 

hq(z) = 1 + bq(l) z + . ..+ bq(q) zq 

have all their roots in the complex z-plane in the region |zj>l, 

For the backward shift operator B we use the lag operator L, 

defined by LY(t) - Y(t=l).  An ARMA(p.q) model is written 

Sp(L) Y(t) = hq(L) e(t) 

An AR(<*>) model is expressed 

tarn 
-•• • • - 
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gco(L) Y(t) = e(t) 

An MA(°°) model is expressed 

Y(t) = hjL) e(t) 

A model for a stationary time series is an invertible 

filter which transforms it to white noise.  For a short memory 

time series, the whitening filters can always be represented as 

AR(°°) or MAO) and are approximated by ARMA(p.q) of suitable 

orders to be estimated.  The white noise e(t) to which we seek 

to transform a time series Y(t) are the infinite memory one 

step ahead prediction errors (innovations) Yv(t) • Y(t)-YVJ(t), 

where 

Yy(t) = E[Y(t)|Y(t-l),...  ] 

The white noise sequence Y (t) has mean 0 and variance o^R(0), 

where 

O*   = E[|Yv(t)|] * R(0),   R(0) = E[|Y(t)n 

We call o2 the normalized mean square prediction error, of one- 

step ahead infinite memory prediction.  The importance of 

normalization (which may not currently be standard practice for 

all time series analysts) is emphasized by the information theory 

approach in the next section.  A basic diagnostic tool is the 

memory m normalized mean square prediction errors 

•M •• 
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o^ = E[|Yv'm(t)|2] * R(0), 

rv,m Yv,l"(t) = Y(t) - Y»'m(t) y,m, 

ry,m (t) = a (1) Y(t-l) +...+ a (m) Y(t-m) m m 

Given a true (or sample) correlation function p(v), one can 

compute (using the Yule-Walker equations) the sequence a2 which 

converges monotonely to the limit a2.     An alternative approach 

to computing o2 is the fundamental formula 

log a^  = /0 log f(oj) dw . 

The value of a^ is a very useful diagnostic measure of the memory 

of a time series. 

Memory classification by Normalized Mean Square Prediction Error 

no memory    =  o2 = 0 

short memory =  0 < a2 < °° ~ CO 

long memory 2    _ 

The estimation of o2 is one of the basic problems of time 

series model identification.  One important method is 

o2 = o2 
m 

where m is chosen by an order-determining criterion (AIC due to 

Akaike or CAT due to Parzen).  The pioneering work of Akaike (1974), 

( 
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i.  . 

(19 77) has shown the central role of information theoretic 

ideas in defining these criteria. 

The next section discusses how to use information 

divergence ideas to measure the ability of ARMA(p.q) schemes 

to provide approximating models to the exact models (of a 

short memory time series) provided by AR(°°) and MA(°°) 

representations. 

_- —. 

i 
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6.   Information approach to memory and ARMA schemes 

Information divergence of a probability density g from a 

(true) probability density f is defined by 

Kf;g) - /"{-log §&!} f(y) dy 

Information has an important decomposition 

I(f;g) = H(f;g) - H(f) 

defining cross-entropy H(f;g) and entropy H(f) by 

H(f;g)   =   /°°{-log  g(y)}   f(y)   dy 
— 00 

H(f)   =  H(f;f)   =   /°°   {-log  f(y)}   f(y)   dy       . 
— 00 

The information I(Y|X) about a continuous random variable 

Y in a continuous random vector X is defined by 

l(Y|X) = KfY|X; fY) = Ex KfY|X; fY) 

The entropy of Y and conditional entropy of Y given X are 

defined by 

H(Y) = H(fy) 
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H(Y|X) = H(fY|x) - ExH(fY|x=x) 

One can establish a fundamental decomposition 

I(Y|X) = H(Y) - H(Y|X) 

Define the information about Y in X2 conditioned on X^ by 

I(Y|Xi; Xl,X2) -H(fy|Xi) - H(fY|XiX2) 

= H(Y|X1)- H(Y|X1,X2) 

A fundamental formula to evaluate an information increment is 

I(Y|X1;X1,X2) = I(Y|X1,X2) - KYjXj^ 

When X and Y are jointly normal random variables, let E(Y) 

denote the variance of Y and £(Y|X) the conditional variance of 

Y given X (which does not depend on the value of X).  Then 

H(Y) = \  log EOT) + J  <1 + log 2TT) 

1I(Y|X) = \  log E(Y|X) + \  (1 + log 2TI) 

I(Y|X) - - \  log E_1(Y) E(Y|X) 

— ] 



A general approach to memory uses Information in the 

infinite past about the current value, defined by 

I = lim I 
00 

m->-ao 
m 

Im = I(Y(m+l)|Y(l) Y(m))   . 

Information Definition of Memory.  We define a time series 

Y(t), t=0, +1  to be 

no memory    =1=0 
* 00 

short memory    0 < I  < 

long memory oo 

This definition agrees with the criterion in the previous 

section in terms of a2 since for a  stationary Gaussian time 

series I    =  -  7T  lOg  0 oo        2 ' 

Example.  A random walk has long memory and white noise has 

no memory. 

A random walk is defined by Y(m+1) = Y(m) + e(m+1), Y(0) = 0, 

where c(t) are independent N(0,a2), E(Y(m+l)) = (m+1) a2, 

E[Y(m+l)|Y(l) f..,Y(m)] = Y(m), I(Y(m+1)|Y(l)l Y(m)) = a2, 

I " w log (m+1) , 1^ =oo.  A pure white noise is defined by 

Y(m) = e(m).  Then r(Y(m+i))-a2 E[Y(m+1) |Y(l) Y(m)J - 0, 

E(Y(m+l)|Y(l) Y(m)) = o2, Im = 0, !„ - 0. 

•i l  H - • 



*m*^mi 

26 

Both a random walk and a pure white noise can be regarded 

as special cases [corresponding to p=l and p= 0 respectively] 

of the AR(1) model 

Y(t) = pY(t-l) + e(t),   t-1,2  

where c(t) are independent H(0,o2).  When |p| < 1, an AR(1) 

defines a stationary (or asymptotically stationary) time series 

satisfying 

I  = \  log (1-p2). 

In order to transform one's thinking about AR(1) models from 

p to I  one needs a table of corresponding values of these 

parameters. 

p .1 .2 .3 .4          .5          .6 .7 .8 .9 .95 

I 
oo 

.005 .020 .047 .087     .144     .223 .337 .511 .830 1.16 

I 
00 

.25 .5 .75 1.0       1.25     1.50 1.75 2 3 4 

p .627 .795 .881 .930     .958     .975 .985 .991 .999 .9998 

A very quick and dirty rule for memory diagnosis is to regard an 

observed value of 1^ >^ 1.5 as an early detector of very long 

memory, and I,,, > 1.00 as an early detector of long memory. 

This rule is to be used in conjunction with other rules for 

discriminating memory type which are given in Section 7. 

. — •••• _M - -   •       I I* 
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We next discuss how to interpret an ARMA(p.q) scheme in 

terms of information.  Let I   - I(Y|Y_1#...,Y_ , Y^,,...1*  ) 

denote the information about Y(t) in Y(t-l),...,Y(t-p), 

Yv(t-1),...,Y (t-q).  For a Gaussian stationary short memory 

time series 

p,q   2 b   p,1 

where 

°p\q - *"l<*) UY|Y_L Y_p, Y_\ Y^q) 

Let Y~ denote the infinite past Y(t-l), Y(t-2), ... .  Then 

K  " WIO = - \  log „; 

A measure of the goodness of fit of an ARMA(p.q) model to 

the true model for a stationary time series is 

S.qio = I(Y,Y-1 %' Y-l Y-q; Y_) 

= 1-1 
p.q 

J log o*) + j log o» q (_ 1 u. -i* • 1 

A time series Y(«) is ARMA(p.q) if, and only if, I     - 0. 

4 
• •----•• —-^B 
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Formulas for I     are most conveniently developed in 

terms of the coefficients 3,, $2«... of the MA(°°) representation 

of a time series: 

Y(t) = Yv(t) + ßj_ Yv(t-1) + ... 

There are two methods for estimating the MA(°°) coefficients; 

invert AR( m) where m is chosen by an order-determining 

criterion, or derive ß, from estimators of (the cepstral 

pseudo-correlations) 

0.5 
\p(v)   = /   exp (2Trivoü) log f(w) dw 

-0.5 

In the Gaussian case,   information is (up to a constant) 

the logarithm of variance.  It may seem that there is no 

reason to prefer information to variance.  However information 

concepts  are  meaningful even for non-Gaussian series (although 

they have not yet been extensively calculated in the non-Gaussian 

case).  Thus by translating variance into information, one can 

eventually transfer one's Gaussian intuition to non-Gaussian 

data analysis. 

To illustrate the use of information in model identification, 

let us consider the loss one sustains in using the best fitting 

AR(2) model when the true model is an ARMA(1,1) 

Y(t) + a Y(t-l) • £(t) + b £(t-l) 

t 
«•n^. I 
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One can compute a2, p(l), p(2) in terms of a and b.  The values 

of p(l) and p(2) determine (via the Yule-Walker equations) the 

optimal values o2, a2(l), a2(2).  When a = -.5, b - .5, one 

obtains o* = .4286, p(l) - .7143, p(2) = .3571; o2 = .4418, 

a-(l) = -.9378, a~(2) = .3126.  The information loss in using 

the approximating AR(2) model 

Y(t) - .9378 Y(t-l) + .3126 Y(t-2) = e(t) 

rather than the exact ARMA(l.l) with -a=b=.5 is ,015, since 

1 , 21   ;  1 I (YjY^.Y^; Y ) = {- £ log a2J   - {- £ log c2} 

= .4236 - .4084 = .015 

Estimating MA(°°) is also a prerequisite to using another 

criterion that we use to estimate memory: the Prediction Variance 

Horizon function, introduced in Parzen (1981).  It provides a 

quantitative method of measuring memory (especially medium 

memory) by HORIZON, defined as the smallest value of h for which 

i + e2(i)+...+e2(h-i) > 0 95 
1 + B2(l) +... 

The left hand side of the above inequality can be interpreted 

as representing the mean square error of prediction h steps 

ahead. 

•MMite^     ._—»k_—^ 
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7.  Quantile based time series diagnostics, and their 

representative values 

This section introduces various quantile based time series 

diagnostic measures.  Their use can be considered exploratory 

data analysis since they require no theory for interpretation if 

one is willing to base one's conclusions on the empirically 

observed values of the criteria for representative time series. 

On the other hand, the criteria are based on clearly stated 

concepts of probability theory, and one could study theoretially 

the distribution of the criteria for various time series models. 

Quantile diagnostics of normality of data.  A diagnostic 

measure of the shape of a distribution is the log standard 

deviation of the informative quantile function, denoted LNSDIQ, 

and defined by 

LNSDIQ ,  ("standard deviation of original data "1 
*V twice interquartile range        / 

For a normal distribution, interquartile range equals 1.35 

standard deviation; therefore LNSDIQ " - log 2.7 = -1 

approximately.  We can regard a significant difference of 

LNSDIQ from -1 as an indication that the probability distribution 

of the data is not normal (Gaussian).  A more formal test of 

normality is to compare LNSDIQ with LNSGMO = log a   , where 

a0  = ll  *-1(u) IQ(u) du 

9 
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is the score deviation (an efficient estimator of o for a 

normal distribution, obtained as a linear combination of order 

statistics).  This test (analogous to the Shapiro-Wilk test for 

normality) requires further theory as we find examples in which 

the data have IQ(u) plots that are not normal (confirmed by 

LNSDIQ different from -1), yet LNSD1Q and LNSGMO are not 

different. 

To decide whether data is normal, the entire graph of the 

informative quantile [IQ(u)] function should be examined. 

However an early detector of the shape is provided by the 

value of LNSDIQ as is indicated by the following empirical 

values: 

LNSDIQ 

Variable 
-1.14 
-1.14 
-1.24 
-1.34 
-1.34 
-1.32 

Cauchy white noise 0 
Airlines log monthly 1.38 
NYC Monthly Births ' .93 
Lines + Noise 1.72 
Cauchy random walk 1.48 
NYC Monthly Temperature 1.17 
Normal random walk 1.11 

In the tables in this section, I  • - w log a2   is estimated 

by I" for the approximating AR(m) schome, where the order m is 

determined by the AIC criterion (or equally the CAT criterion). 

Periodogram.  For a white noise time series whose random 

variables have finite second moment, the quantile function of 

the periodogram should be that of an exponential distribution with 

mean 1.  A test of white noise is provided by examining IQ(u) 

• • 
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for exponentiality.  Powerful discriminators of memory type are 

the median and variance of the periodogram.  For white noise 

Periodogram median = log 2 • .69 

Periodogram variance = 1. 

As memory increases, per. median decreases and per. variance 

increases, as the following empirical results confirm [the values 

for AR(1) processes are based on the table "Quantile Memory 

Analysis of Simulated AR(1)" in the Appendix]. 

1 

Periodogram median 

89 
7 
2 
08 
02 
08 
06 
04 
03 
03 
02 

Cauchy white noise 
Normal white noise 
Normal AR(1), p = .8 
Normal AR(1), p = .9 
Normal AR(1), p = .99 
NYC Births Monthly 
NYC Temperatures Monthly 
Normal random walk 
Airlines log monthly 
Cauchy random wlak 
Lines plus noise 

Periodogram variance 

67.7 
49.8 
41.5 
38. 
39. 
33. 
42. 
22. 
1 
.5 

3 
7 
1 

Lines plus noise 
NYC Temperatures Monthly 
Normal random walk 
Cauchy random walk 
Airline log monthly 
NYC Births monthly 
Normal AR(1), p = .99 
Normal AR(1), p = .9 
Normal white noise 
Cauchy white noise 
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Correlations.  As a memory diagnostic, we use correlations 

mean square of sample correlation p(v) • pT(v), v=l,2,..., 

N 

Kl?M 

computed for a large value of N.  It is zero for white noise, and 

increases with memory.  Some empirical values are: 

.002 Cauchy white noise 

.004 Normal white noise 

.01 Normal AR(1),   p = .7 

.1 Normal AR(1),   p = .9 

.2 Normal AR(2),   p = .99 

.14 NYC Births monthly 
. 18 Normal random wlak 
. 17 Cauchy random walk 
.19 Airlines log monthly 
.23 Line plus noise 
.26 NYC Temperatures monthly 

Delta estimators.  A conclusion that a time series is long 

memory is regarded by us as valid only when it is confirmed by 

the behavior of the sequence of estimators 6, of the memory 

index 6.  We routinely form these estimators at Oü=0 and ü)=1/12. 

Note that 1/12 is the period of an annual cycle in monthly data; 

the program permits the specification of any other seasonal 

frequency.  Two sequence of estimators 6,    are formed; from the 

best approximating AR scheme, and from Parzen window eatimators 

with truncation point approximately equal to T/2, where T is 

the time series sample size [the time series examined had 

T=144 to 200]. 

—i       in -        —*—^—*^-     j^M*^^tJfck—•——— 
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Our "estimator" <5 is currently only a summary of the 

behavior of the sequences 6v, indicating a value about 

which there is clustering.  For normal AR(1) schemes at w=0 

the following typical values were found in simulated series. 

approximate 6 2 1.5 1 

when I CO 1.75, 2 1.25, 1.50 1 

p .99 .96 .93 

For empirical series we observed the following estimators 6 

0) = • 0 
Best Parzen 
AR window 

1.98 2.22 
1.84 1.84 
2.33 2.22 
-.4 -.8 
2.05 1.74 

us = 1/12 
Best Parzen 
AR window 

.33 .51 

.37 .48 
1.56 1.42 
2.1 2.6 
1.12 .77 

Lines + Noise 
Cauchy random walk 
Airlines log monthly 
NYC Temperatures Monthly 
NYC Births Monthly 

Note that a negative value of 6 at <D=0 indicates the 

possibility that the spectral density f(u) is zero at w=0. 

Partial correlations.  The sequence of partial correlations 

are usually used to diagnose if the time series obeys an 

autoregressive scheme, since AR(p) is equivalent to partial 

correlations equal to 0 for orders greater than p.  The quantile 

function of partial correlations then should look like white 

I—Ifc. r   —- 
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noise plus as many outliers as the order of the scheme.  As 

diagnostic measures of memory we compute: 

PCIQR = interquartile range of the quantile 

function of partial correlations; 

PCLNSD = log standard deviation of the informative 

quantile function IQ(u) of partial 

autocorrelations; 

PCOUT = number of partial correlations greater in 

absolute value than twice interquartile 

range, number of values of u at which 

|IQ(u)| > 1. 

Typical values of these measures for representative time series 

will be published elsewhere. 

i     '  -'-'"'• -- — 
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8.  ARSPIQ analysis of simulated long memory series 

To illustrate their research on long memory time series 

models, Granger and Joyeux (1980) generated series of the form 

(I-D^Ct) = e(t) 

with spectral density (for some constant c) 

fy (u) = c(l - cos 2TTLO) 

This spectral density is regularly varying at u>=0 with memory 

index 6 = 2d.  They generated two series of length 400, 

corresponding to d = .25 (6=.5) and d = .45 (6=.9).  We call 

these series White 6.5 and White 6.9 respectively.  I would 

like to thank Clive Granger and Roselyne Joyeux for having given 

us copies of their series to study.  Some of the diagnostics 

generated by ARSPIQ are as follows: 

DATA LNSDIQ 
DATA LNSGMO 
Variance Periodogram 
Median Periodogram 
Correlation Mean Square 
Delta Estimator w=0 

Best AR 
Parzen Window 

AIC order m 
1 ,   "2 

Iro = - 7 log o- 
Prediction Variance Horizon 

te  6.5 White  6.9 

-.95 -1.03 
-.95 -1.03 
6.9 10.9 

.54 .30 

.02 .03 

0.9 1.0 
0.6 1.2 
7 4 

14 35 

24 20 



•'•» *»' ' **—^mmmmimmm 

37 

Comparing these diagnostics with the values obtained for 

various series in Section 7, we might conclude the following 

characteristics for the series. 

Data LNSDIQ, LNSGMO 

Corr. Mean Square 

Periodogram, Var 

Periodogram, Median 

loo 

Pred.   Var.   Hor. 

Delta     u)=0 

Normal 

Short memory 

Short memory 

Short memory 

Short memory 

Medium memory 

Long memory 

Printer plots of delta estimators are given in Figures 5, 

6, 11, 12.  One does not currently get an exact numerical 

estimate of 6.  But the values estimated for 6 are consistent 

wiht the theoretical values of 6 used in generating the time 

series.  On the basis of the foregoing diagnostics, one would 

be justified in recommending a fractional differencing of the 

time series, using a rough estimate of 6. 

If one fitted an ARMA model to these series one might be 

tempted to fit ARMA(l.l) models: for white 6.5, 

Y(t) 75 Y(t-l) = e(t) - .47 e(t-l) ; 

for white 6.9, 

Y(t) - .89 Y(t-l) = e(t) - .44 e(t-l) 

—i 
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By comparing the spectral distribution function of these ARMA 

schemes with the cumulative periodogram one would see that the 

ARMA models inadequately modeled the low frequency portion of 

the spectral distribution function. 

The question is open whether expect practictioners of purely 

time domain ARMA or ARIMA methods of time series analysis could 

identify the model generating the series simulated by Granger and 

Joyeux. 

—i __—•. mm - 
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9.   Does the airline data fit the airline model? 

The aim of time series modeling is to find a filter that 

transforms the time series to white nosie.  A possible model 

identification procedure is to guess a model, estimate its 

parameters, form the residuals, and test if the residuals are not 

significantly different from white noise.  This procedure in 

practice may lead two different analysts to infer two different 

models.  The question is open how to resolve which model to 

accept (which model is "better").  The concept of memory seems to 

provide a characteristic of a time series which can be estimated 

non-parametrically.  Statisticians must decide whether to 

accept as a model fitting criterion the following:  a model 

fitted to a time series must satisfy the criterion that its 

memory characteristics agree with those estimated from the 

data. 

The operation of this criterion can be illustrated by a 

classic series used as a test case by researchers on time series 

model identification methods — log international airlines 

passengers series.  The model fitted by Box and Jenkins (1970) 

to this series has become celebrated as the "airline model".  It 

takes 1st and 12th differences of the series Y(t) to form a short 

memory time series Y(t): 

(I-L)(I-L12) Y(t) = Y(t); 

Y(0 is modeled as a special form of MA(12) 
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12, Y(t) = (I-e^d-e^L") e(t) 

Parzen (1982) has suggested that 12th differences might suffice 

as an operation which transforms the original series (which has 

long memory) to a new series which is just barely short memory. 

The diagnostics in the table [which one interprets by comparing 

them with the representative values in Section 7] indicate 

that 12th differencing does suffice to yield short memory. 

Log Airline 
Log Airline 12th difference 

Data LNSDIQ -1.15 -.97 
Data LNSGMO -1.16 -.97 
Periodogram Median .03 .19 
Periodogram Variance 39.7 7.7 
Correlation Mean Sq. .19 .05 
Delta Estimate  OJ=0 

Best AR 2.33 0 
Parzen Window 2.22 0 

Delta Estimate u = 1/12 
Best AR 1.56 0 
Parzen Window 1.42 0 

T         1 ,     "2 
I. - - 2 log % 1.38 .5 

Prediction variance horizon 51 66+ 

Note on how we form the estimator 6:  we write 6=0 to 

indicate that sequence 6,    oscillates between negative and 

positive values.  Negative values could indicate 6<0 and presence 

of a zero of the spectral density.  In our current state of 

knowledge we assign a value to 6 representing essentially flat 

behavior of 6, .  If the 12th difference spectral density had a 

zero at w-0 or OJ/1/12, we would suspect that we had over-differenced. 

— WM 
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A quantitative measure of memory is the prediction variance 

horizon [51 for airline, >66 for 12th difference]; one concludes 

that differencing the time series still has significant trend 

components (long memory).  The ARARMA modeling procedure of 

Parzen (1982) finds that if one transforms the airline series by 

12 12 the operator I - 1.02L  rather than by I - L  , one does obtain 

a time series which is unequivocably short memory. 

__ i 
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10.  ARSPIQ Analysis of 12th difference of white noise 

The ability of ARSPIQ to identify time series models may 

be well illustrated by an analysis of a simulated time series 

Y(t) = e(t) - e(t-12), 

where e(t) is N(0,1) white noise.  A sample of size T=200 was 

simulated.  It had mean .02, median .01, variance 2.16.  The 

DATA diagnostics LNSDIQ = -1.04, LNSGMO = -1.04 indicate that 

the data is normal. 

The diagnostics 

Periodogram median 

Periodogram variance 

Correlation mean square 

Best AR order m 

I - Z loS °fi 

.38 

2.63 

.01 

24 

.27 

indicate that the time series is short memory.  But the AR 

spectral density estimator does not perform well. 

The delta diagnostics indicate that the time series is 

long memory.  That the spectral density has zeroes at frequencies 

uj=0 and u>= 1/12 is indicated by significantly negative values of 6 

Delta estimate co=0 U) 1/12 

Best AR(m - 24) 

Parzen window 

1.9 

1.6 

-1.2 

- .9 

J 
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To estimate prediction variance horizon [and an ARMA scheme 

by select regression on the covariance matrix of Y(t-j), Y (t-k)] 

we fit an MA(») by inverting an AR(96) whose coefficients are 

computed by a Burg algorithm; it estimates I = .63, prediction 

horizon > 100, and chooses the model 

Y(t) + .41 Y(t-12) = e(t) - .55 e(t-12). 

This ARMA spectral density has exactly the shape of the true 

spectral density of Y(«)- 

1 
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11.  Quantile graphics printer plots illustrated 

The printer plot graphical output generated by ARSPIQ is 

illustrated for the long memory simulated series White 6.5 

and White 6.9 which are respectively labelled J0Y1 and J0Y2 

on the attached output. 

Informative quantile function of the original time series 

J0Y1 and J0Y2 are plotted in Figure 1 and 7 respectively (with 

letters 0 and M); IQ(u) plots indicate normality, confirmed by 

D(u) plots in Figures 2 and 8. 

Informative quantile function of the periodogram of time 

series J0Y1 and J0Y2 are plotted in Figures 3 and 9 

respectively; they are not exactly exponential, as is confirmed 

by D(u) plots in Figures 4 and 10. 

The index 6 of regular variation of the spectral density at 

zero frequency is estimated by the "limit" of the sequence 6, 

plotted in Figures 5 and 11 (using AR spectral density estimator) 

and Figures 6 and 12 (using Parzen window spectral density 

estimator).  In Figure 5, a limit exists which is approximately 

0.9; in figure 6, one may assign a limit value of approximately 

0.6.  In figure 11 the limit is assigned to be approximately 1; 

in figure 12, the limit is assigned to be approximately 1.2. 

Figures 13 and 14 represent covariances of the time series 

Y(t) and its innovations e(t) = Y (t) estimated for input into 

the "ARMA identification by select regression" procedure. The 

last column is Prediction Variance Horizon function. 
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12.  Concluding Remarks 

It is important to understand the role of memory when 

using [for time series model identification] ARIMA (p.d.q) 

models introduced by Box and Jenkins (1970).  Memory is related 

to d, but not to the orders p and q.  An AR(1) process Y(t) 

satisfying g^(L) Y(t) = e(t) where g-,(z) = 1-pz is diagnosed as 

long memory when the transfer function g,(z) has its root 1/p 

close to the unit circle in the complex z-plane.  An example 

of a long memory population correlation function is p(v) = 

cos 2iTii)t, which can be regarded as corresponding to an AR(2) 

scheme whose transfer function go(z) = 1-(2 cos 2TTU))Z + z2 

has roots on the unit circle.  In the ARSPIQ approach to time 

series model identification, roots are' not explicitly evaluated 

because their role is subsumed by memory. 

The models automatically identified by ARSPIQ have been 

found in practice to have the same quality as exact models for 

purposes of forecasting and spectral estimation.  Other 

diagnostics of model structure (such as correlations, partial 

correlations, and inverse correlations) are also generated in 

ARSPIQ and can be used in traditional ways to guess model 

structure. 

There are still many open problems in the theory of time 

series model identification, such as tests to determine which of 

several possible models fits best.  FUN.STAT (statistical 

reasoning based on quantiles, entropy and information, and 

' 
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functional statistical inference) may be able to help statistical 

scientists find better solutions to problems of model 

identification. 
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ARSPIQ 

The ARSPIQ Fortran Computer Program for Time Series Model 

Identification by estimating information and memory is used at 

Texas A&M in a batch mode.  It generates the following output 

for examination by the time series analyst. 

1. Quantile data analysis of original data: ^IQ(u) 
Goodness of fit of normal distribution:  D(u). 
LNSQID, LNSGMO 
Generates time series Y(t) with median subtracted 

2. Quantile data analysis of normalized periodogram:  IQ(u) 
Goodness of fit of exponential distribution:  Ö(u) 
Median periodogram, variance periodogram 
Delta estimates at zero and seasonal frequencies (based 

on periodogram, usually no limit evident). 

3. Quantile data analysis of correlations:  IQ(u) 
Goodness of fit of normal distribution:  D(u) 
Correlation mean square 

4. Quantile data analysis of partial correlations:  IQ(u) 
Goodness of fit of normal distribution:  D(u) 
Partial correlation inter-quartile range, number of outliers 

5. AR Description of time series: „AIC, CAT orders 
AR coefficients for best order m and 2nd best order 
AR spectral density and spectral distribution plots 

6. AR spectral density delta estimators at zero and seasonal 
frequencies 

Parzen window spectral density delta estimators 

7. MA(°°) estimation 
AR coefficients for order km,   computing partial correlations 

by non-stationary AR (Burg) method, or optionally by 
stationary AR(Yule-Walker) method 

Inverse correlations 
Infinite MA coefficients, prediction variance horizon 

8. ARMA model identification by select regression 
ARMA spectral density and spectral distribution plots. 

9. Cepstral pseudo-correlation estimation. 

10.  Spectral local quantile estimation. 
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Priestley, M. B.  (1981)  Spectral Analysis and Time Series, 
Academic Press: London. 

Schuster, A.  (1898)  On the investigation of hidden periodicitie 
with applications to a supposed 26-day period of 
meteorological phenomena" Terr. Magn. 3, 13-41. 
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9.  Cepstral pseudo-correlation estimation. 

10.  Spectral local quantile estimation. 




